2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018
Current contacts: Vasily Dolgushev, Ed Letzter, Martin Lorenz or Chelsea Walton
The Seminar usually takes place on Mondays at 1:30 PM in Room 617 on the sixth floor of Wachman Hall. Click on title for abstract.
Valentijn Karemaker, University of Pennsylvania
TBA
Neal Livesay, The University of California, Riverside
The problem of classifying singular differential operators has a long and rich pedigree. An algebro-geometric variant of this problem involves the construction of moduli spaces of irregular singular connections on vector bundles (over the Riemann sphere $\mathrm{P}^1$). Locally (i.e., around a singularity), a selection of a basis for the vector bundle induces a matrix form for the connection. The study of matrices associated to connections is analogous to the study of matrices associated to linear maps, and is amenable to representation-theoretic tools. I will discuss recent work in this direction by D. Sage and N. Livesay. No prior knowledge of connections will be assumed in this talk.
Elif Altinay-Ozaslan, Kastamonu University
In his seminal paper, Kontsevich proved that there is an L-infinity quasi-isomorphism from the graded Lie algebra of polyvector fields PV to the graded Lie algebra of polydifferential operators PD. However, the coefficients entering this quasi-isomorphism are hard to compute.The situation simplifies if one considers the algebra of polydifferential operators PD_{const} with constant coefficients. In this talk we show that there exists exactly one homotopy type of an L-infinity quasi-isomorphism from PV_{const} to PD_{const}. Moreover, such a quasi-isomorphism with all rational coefficients can be constructed recursively by arity. This talk is based on a paper in preparation joint with V.A. Dolgushev.
Vasily Dolgushev, Temple University
The story about infinite dimensional Galois extensions of fields is related to the classification of etale algebras over a field. I will give the definition of an etale algebra over a field F and then talk about the classification of etale algebras over F in terms of the absolute Galois group of F.
Vasily Dolgushev, Temple University
We will talk about the fundamental theorem of infinite dimensional Galois theory and its consequences.
Vasily Dolgushev, Temple University
We will introduce profinite groups and show that the Galois group of an infinite Galois extension is a profinite group. Then we will talk about the fundamental theorem of infinite Galois theory.
Vasily Dolgushev, Temple University
We will show that, for every Galois extension, the Galois group G is compact (Hausdorff) and totally disconnected. We will also show that G is a projective limit of finite groups with the discrete topology. If time will permit, we will talk about the fundamental theorem of infinite Galois theory.
Vasily Dolgushev, Temple University
I will introduce infinite Galois extensions and show that the automorphism group of an infinite Galois extension is naturally a topological group (with the Krull topology). If time will permit, I will talk about the fundamental theorem of infinite Galois theory.
Vasily Dolgushev, Temple University
This series of lectures will be devoted to infinite Galois extensions and I plan to follow Chapter 7 of Milne's book "Fields and Galois Theory". In this talk, I will give a brief reminder of topological groups and introduce the Krull topology on the Galois group.
Angela Gibney, Rutgers University
In this talk I will give a tour of recent results and open problems about vector bundles on the moduli space of curves constructed from the representation theory of affine Lie algebras. I will discuss how these questions fit into the context of some of the open problems about the birational geometry of the moduli space.
Benjamin Collas, The University of Bayreuth
Following Grothendieck's "Esquisse d'un Programme", the moduli spaces of curves present remarkable arithmetic-geometry properties which translate to an elegant study of the absolute Galois group of rationals. This program results in the construction of Grothendieck-Teichmueller groups that express how the topological combinatoric of the compactification of spaces encaptures their arithmetic. In this duality, the arithmetic side is expressed through the deformation of curves and the notion of tangential structure, while the topological side recently found an elegant expression in terms of homotopy of the little 2-discs operad by Fresse, Horel et al. The goal of this talk is to present how these two sides intersect each other in the study of the absolute Galois group of rationals. We will thoroughly present both aspects in some recent work for genus 0 curves, and explain how it indicates some promising research lines in higher genus.
Martin Lorenz, Temple University
This time, the focus will be on affine algebraic groups, with some outlook/problems for "quantum groups" at the end. Again, the talk will be largely self-contained inasmuch as no details from the first two talks will be assumed. I will remind you of the general Nullstellensatz/Dixmier-Moeglin picture from the second lecture at the beginning of the talk.
Martin Lorenz, Temple University
Continuing with the theme of the first lecture, I will present some known results on group algebras and speculate on possible extensions to more general classes of Hopf algebras. Thus, much of the second lecture will again be concerned with groups and group algebras. It will be possible to understand this lecture even if you missed the first one.
Martin Lorenz, Temple University
This series of talks will be concerned with actions of Hopf algebras on other algebras ("quantum invariant theory"). I will present a few observations and then proceed to discuss some speculations and open questions. In the first talk, I plan to focus on "local finiteness."
2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018