The seminar is jointly organized between Temple and Penn, by Brian Rider (Temple) and Robin Pemantle (Penn).
For a chronological listing, click the year above.
Talks are Tuesdays 3:00 - 4:00 pm and are held either in Wachman 617 (Temple) or David Rittenhouse Lab 4C6 (Penn).
You can also check out the seminar website at Penn.
Charles Burnette, Drexel University
A polynomial P ∈ C[z1, . . . , zd] is strongly Dd-stable if P has no zeroes in the closed unit polydisc D d . For such a polynomial define its spectral density function as SP (z) = P(z)P(1/z) −1 . An abelian square is a finite string of the form ww0 where w0 is a rearrangement of w. We examine a polynomial-valued operator whose spectral density function’s Fourier coefficients are all generating functions for combinatorial classes of con- strained finite strings over an alphabet of d characters. These classes generalize the notion of an abelian square, and their associated generating functions are the Fourier coefficients of one, and essentially only one, L2 (T d)-valued operator. Integral representations and asymptotic behavior of the coefficients of these generating functions and a combinatorial meaning to Parseval’s equation are given as consequences.
Nina Holden, MIT
Consider a Brownian motion $W$ in the complex plane started from $0$ and run for time $1$. Let $A(1), A(2),...$ denote the bounded connected components of $C-W([0,1])$. Let $R(i)$ (resp. $r(i)$) denote the out-radius (resp. in-radius) of $A(i)$ for $i \in N$. Our main result is that $E[\sum_i R(i)^2|\log R(i)|^\theta ]<\infty$ for any $\theta <1$. We also prove that $\sum_i r(i)^2|\log r(i)|=\infty$ almost surely. These results have the interpretation that most of the components $A(i)$ have a rather regular or round shape. Based on joint work with Serban Nacu, Yuval Peres, and Thomas S. Salisbury.
Fabrice Baudoin, University of Connecticut
We define and study stochastic areas processes associated with Brownian motions on the complex symmetric spaces ℂℙn and ℂℍn. The characteristic functions of those processes are computed and limit theorems are obtained. For ℂℙn the geometry of the Hopf fibration plays a central role, whereas for ℂℍn it is the anti-de Sitter fibration. This is joint work with Jing Wang (UIUC).
Mihai Nica, NYU
The intermediate disorder regime is a scaling limit for disordered systems where the inverse temperature is critically scaled to zero as the size of the system grows to infinity. For a random polymer given by a single random walk, Alberts, Khanin and Quastel proved that under intermediate disorder scaling the polymer partition function converges to the solution to the stochastic heat equation with multiplicative white noise. In this talk, I consider polymers made up of multiple non-intersecting walkers and consider the same type of limit. The limiting object now is the multi-layer extension of the stochastic heat equation introduced by O'Connell and Warren. This result proves a conjecture about the KPZ line ensemble. Part of this talk is based on joint work with I. Corwin.
Shirshendu Ganguly, Berkeley
The upper tail problem in the Erdös-Rényi random graph $G \sim G(n,p)$, where every edge is included independently with probability $p$, is to estimate the probability that the number of copies of a graph $H$ in $G$ exceeds its expectation by a factor $1 + d$. The arithmetic analog considers the count of arithmetic progressions in a random subset of $Z/nZ$, where every element is included independently with probability $p$. In this talk, I will describe some recent results regarding the solution of the upper tail problem in the sparse setting i.e. where $p$ decays to zero, as $n$ grows to infinity. The solution relies on non-linear large deviation principles developed by Chatterjee and Dembo and more recently by Eldan and solutions to various extremal problems in additive combinatorics.
James Melbourne, University of Delaware
We will present a generalization of a theorem of Rogozin that identifies uniform distributions as extremizers of a class of inequalities, and show how the result can reduce specific random variables questions to geometric ones. In particular, by extending "cube slicing" results of K. Ball, we achieve a unification and sharpening of recent bounds on densities achieved as projections of product measures due to Rudelson and Vershynin, and the bounds on sums of independent random variable due to Bobkov and Chistyakov. Time permitting we will also discuss connections with generalizations of the entropy power inequality.
Paul Bourgade, NYU
Fyodorov, Hiary & Keating have conjectured that the maximum of the characteristic polynomial of random unitary matrices behaves like extremes of log-correlated Gaussian fields. This allowed them to conjecture the typical size of local maxima of the Riemann zeta function along the critical axis. I will first explain the origins of this conjecture, and then outline the proof for the leading order of the maximum, for unitary matrices and the zeta function. This talk is based on a joint works with Arguin, Belius, Radziwill and Soundararajan.
Arnab Sen, University of Minnesota
The majority dynamics on the infinite 3-regular tree can be described as follows. Each vertex of the tree has an i.i.d. Poisson clock attached to it, and when the clock of a vertex rings, the vertex looks at the spins of its three neighbors and flips its spin, if necessary, to come into agreement with majority of its neighbors. The initial spins of the vertices are taken to be i.i.d. Bernoulli random variables with parameter p. In this talk, we will discuss a couple of new results regarding this model. In particular, we will show that the limiting proportion of ‘plus’ spins in the tree is continuous with respect to the initial bias p. A key tool in our argument is the mass transport principle. The talk is based on an ongoing work with M. Damron.
Tobias Johnson, NYU
onsider a set of trees such that a tree belongs to the set if and only if at least two of its root child subtrees do. One example is the set of trees that contain an infinite binary tree starting at the root. Another example is the empty set. Are there any other sets satisfying this property other than trivial modifications of these? I'll demonstrate that the answer is no, in the sense that any other such set of trees differs from one of these by a negligible set under a Galton-Watson measure on trees, resolving an open question of Joel Spencer's. This follows from a theorem that allows us to answer questions of this sort in general. All of this is part of a bigger project to understand the logic of Galton-Watson trees, which I'll tell you more about. Joint work with Moumanti Podder and Fiona Skerman.
Patrick Devlin, Rutgers
Suppose F is a random (not necessarily uniform) permutation of {1, 2, ... , n} such that |Prob(F(i) < F(j)) -1/2| > epsilon for all i,j. We show that under this assumption, the entropy of F is at most (1-delta)log(n!), for some fixed delta depending only on epsilon [proving a conjecture of Leighton and Moitra]. In other words, if (for every distinct i,j) our random permutation either noticeably prefers F(i) < F(j) or prefers F(i) > F(j), then the distribution inherently carries significantly less uncertainty (or information) than the uniform distribution.
Our proof relies on a version of the regularity lemma, a combinatorial bookkeeping gadget, and a few basic probabilistic ideas. The talk should be accessible for any background, and we will gently recall any relevant notions (e.g., entropy) as needed. Those unhappy with the talk are welcome to form an unruly mob to depose the speaker, and pitchforks and torches will be available for purchase.
This is from a recent paper joint with Huseyin Acan and Jeff Kahn.
Christopher Sinclair, University of Oregon
We consider the distribution of N p-adic particles with interaction energy proportional to the log of the p-adic distance between two particles. When the particles are constrained to the ring of integers of a local field, the distribution of particles is proportional to a power of the p-adic absolute value of the Vandermonde determinant. This leads to a first question: What is the normalization constant necessary to make this a probability measure? This sounds like a triviality, but this normalization constant as a function of extrinsic variables (like number of particles, or temperature) holds much information about the statistics of the particles. Viewed another way, this normalization constant is a p-adic analog of the now famous Selberg integral. While a closed form for this seems out of reach, I will derive a remarkable identity that may hold the key to unlocking more nuanced information about p-adic electrostatics. Along the way we’ll find an identity for the generating function of probabilities that a degree N polynomial with p-adic integer coefficients split completely. Joint work with Jeff Vaaler.
Milan Bradonjic, Bell Labs
When modeling the spread of infectious diseases, it is important to incorporate risk behavior of individuals in a considered population. Not only risk behavior, but also the network structure created by the relationships among these individuals as well as the dynamical rules that convey the spread of the disease are the key elements in predicting and better understanding the spread. We propose the weighted random connection model, where each individual of the population is characterized by two parameters: its position and risk behavior. A goal is to model the effect that the probability of transmissions among individuals increases in the individual riskfactors, and decays in their Euclidean distance. Moreover, the model incorporates a combined risk behavior function for every pair of theindividuals, through which the spread can be directly modeled or controlled. The main results are conditions for the almost sure existence of an infinite cluster in the weighted random connection model. We use results on the random connection model and sitepercolation in Z^2.